
'C' Bitwise Operators

Relevance to 'C' of bitwise applications

Syntax and expressions

Example getter and setter functions

Eratothene's prime number sieve

Relevance to 'C' of Bitwise Applications

'C' was designed to write system software as an
 alternative to assembler: compilers, kernels, device
 drivers, interpreters, relational database engines,
 virtual machines.

So this language needs access to raw hardware and
 individual bit values. Coding designed for specific
 hardware design features will be non portable.

Portability Constraints

Different microprocessors organise integer and
floating point data differently, e.g. big endian or
little endian, two's or one's complement, location
and size of exponent, sign bit and mantissa.

Device drivers for different hardware implement
different instruction sets.

Operator Summary

Bitwise Operators
 ~ Bitwise unary NOT
 & Bitwise AND
 | Bitwise OR
 ^ Bitwise XOR
 >> Shift Right
 << Shift left
 &= Bitwise AND Assignment
 |= Bitwise OR Assignment
 ^= Bitwise XOR Assignment
 >>= Shift Right Assignment
 <<= Shift Left Assignment

Bitwise Operators

Applied to integer type – long, int, short, byte and
char.

A B A | B A & B

A ^ B

! A

0 0 0 0 0 1

0 1 1 0 1 1

1 0 1 0 1 0

1 1 1 1 0 0

Bitwise Operators

EXAMPL

E

MEANING EXPLANATION EXAMP

LE

RESULT

~ Bitwise

unary NOT

This operator is used to invert

all the bits

~42 213

& Bitwise

AND

Produce a 1 bit if both

operands are also 1

otherwise 0

2 & 7 2

| Bitwise OR either of the bits in the

operands is a 1, then the

resultant bit is a 1 otherwise 0

2 | 7 5

^ Bitwise

exclusive

OR

if exactly one operand is 1,

then the result is 1.

Otherwise, the result is zero

2 ^ 7 7

Bitwise Operators

EXAMPLE

MEANING EXPLANATION EXAMPLE

RESULT

>> Shift right The right shift operator, >>,

shifts all of the bits in a value

to the right a specified number

of times.

7>>2 1

<< Shift left The left shift operator, <<,

shifts all of the bits in a value

to the left a specified number

of times.

2 << 2 8

|= Bitwise OR

assignment

either of the bits in the

operands is a 1, then the

resultant bit is a 1 otherwise 0

a=2

a&=2

a=2

&= Bitwise

AND

assignment

if exactly one operand is 1,

then the result is 1. Otherwise,

the result is zero

a=2

a|=2

a=2

Bitwise Operators

 • bitwise operators operate on individual bits
 of integer (int and long) values.
 • If an operand is shorter than an int, it is
 promoted to int before doing the operations.
 • Negative integers are stored in two's
 complement form.

For example, -4 is:
1111 1111 1111 1111 1111 1111 1111 1100.

In-place operators

Inplace versions of operators exist which modify
 the LHS operand in place rather than returning the
 result for a seperate assignment, e.g. a >>= b
 performs a right shift of b bits directly on a .

These work in the same manner as += , = and *=
in-place operators compared to + and * .

Left and Right Shift Operators

The >> operator shifts a variable to the right and the
<< operator shifts a variable to the left. Zeros are shifted
 into vacated bits, but with signed data types, what
 happens with sign bits is platform dependant.

The number of bit positions these operators shift the value
 on their left is specified on the right of the operator. Uses
 include fast multiplication or division of integers by
 integer powers of 2, e.g. 2,4,8,16 etc.

Left and right shift example

#include <stdio.h>
int main(void){
 unsigned int a=16;
 printf("%d\t",a>>3); /* prints 16 divided by 8 */
 printf("%d\n",a<<3); /* prints 16 multiplied by 8 */
 return 0;
}

output: 2 128

Bitwise AND and inclusive OR

 Single & and | operators (bitwise AND and OR)
 work differently from logical AND and OR
(&& and ||). You can think of the logical operators
 as returning a single 1 for true, and 0 for false.

The purpose of the & and | bitwise operators is to
 return a resulting set of output 1s and 0s based on
 the boolean AND or OR operations between
 corresponding bits of the input.

Bitwise AND/OR example

#include <stdio.h>
int main(void){
 unsigned char a='\x00',b='\xff',c;
 c='\x50' | '\x07'; /* 01010000 | 00000111 */
 printf("hex 50 | 07 is %x\n",c);
 c='\x73' & '\x37'; /* 01110011 & 00110111 */
 printf("hex 73 & 37 is %x\n",c);
 return 0;
}

Output:
hex 50 | 07 is 57
hex 73 & 37 is 33

Bitwise exclusive OR operator

Symbol: ^

For each bit of output, this output is a 1 if
 corresponding bits of input are different, and the
 output is a 0 if the input bits are the same.

Bitwise complement operator ~

Symbol: ~

 This is a unary operator in the sense that it works
 on a single input value. The bit pattern output is
 the opposite of the bit pattern input with input 1`s
 becoming output 0`s and input 0`s becoming
output
 1`s.

2’s Complement Operator

➲ Bitwise compliment operator is an unary operator

(works on only one operand). It changes 1 to 0
and 0 to 1. It is denoted by ~.

➲ 35 = 00100011 (In Binary) Bitwise complement

Operation of 35 ~ 00100011 ________ 11011100
= 220 (In decimal). Twist in bitwise complement
operator in C Programming.

➲ The bitwise complement of 35 (~35) is -36 instead
of 220, but why?

2’s Complement Operator

➲ For any integer n, bitwise complement of n will be -
(n+1). To understand this, you should have the
knowledge of 2's complement.

➲ Two's complement is an operation on binary
numbers. The 2's complement of a number is equal
to the complement of that number plus 1.

 For example:

Decimal Binary 2's complement

0 00000000 -(11111111+1) = -00000000 = -0(decimal)

1 00000001 -(11111110+1) = -11111111 = -256(decimal)

12 00001100 -(11110011+1) = -11110100 = -244(decimal)

220 11011100 -(00100011+1) = -00100100 = -36(decimal)

2’s Complement Operator

➲ Note: Overflow is ignored while computing 2's

complement. The bitwise complement of 35 is 220
(in decimal). The 2's complement of 200 is -36.
Hence, the output is -36 instead of 220.

➲ Bitwise complement of any number N is -(N+1).
Here's how:

➲ bitwise complement of N = ~N (represented in 2's
complement form) 2'complement of ~N= -
(~(~N)+1) = -(N+1)

2’s Complement Operator

